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Energetics of Gg and C,, Fullerene and Near-Fullerene Carbon Cages

M. C. Domene P. W. Fowler,*T D. Mitchell,? G. Seifert} and F. Zerbetto?

Department of Chemistry, Usrsity of Exeter, Stocker Road, Exeter EX4 4QD, U.K., InstituTheoretische
Physik, Technische Usersitd Dresden, Mommsenstrasse 13, D-01069 Dresden, Germany, and Dipartmento di
Chimica G. Ciamician, Uniersita di Bologna,via F. Selmi 2, 40126 Bologna, Italy

Receied: April 16, 1997; In Final Form: August 20, 1997

Model semiempirical studies using quantum consistent force fglQICFF/PI) and density functional tight
binding (DFTB) methods show the,g£dodecahedral fullerene to have the lowest energy of all 7595
mathematically possible 20-vertex trivalent polyhedral cages by a substantial margin (estimated at 521 (QCFF/
PI) or 125 (DFTB) kJ moll). A topological invariant based on the distribution of face sizes is used to
correlate the energies and predict the best polyhedral structurefowkich must be a nonfullerene cage.

With 1 square, 10 pentagonal, and 2 hexagonal faces, this structure is verified to be more stable (by 259
(QCFF/PI), 60 (DFTB) kJ mol) than its nearest trivalent polyhedral rival.

1. Introduction ishingly small, fraction of the possibilities. At 20 vertices there
are 7595 trivalents of which only one is a fullerene. The number

From a combination of experimental and theoretical work, of trivalents climbs steeply (49 566 for= 22, 339 722 fom
the outlines have emerged of a general picture of the thermo-_ », 5 406 841 fon = 26, and so of) and by’60 vertices has
dynamically favored structures for clustgrs consisting of a few reacﬁed an estimated 5 1071 of which only 1812 are
to a few hundred carbon atoms (for reviews, see for example g6 renes (all counts refer to structural isomers). Itis therefore
refs 1, 2 and references therein). Open chains for very small 5|64t conceivable that some class of trivalent polyhedra wil
Cn molecules give way to cyclic and then more highly connected 066 in energy on the fullerenes. To test this idea we need
structures to be replaced, in turn, by polyhedra, which for atom 3 16 of thumb for estimating the stability of an arbitrary

counts of 60, 70, 76, 78, and 84 among others have beeny; ajant carbon cage. A first step to obtaining this would be a

characterized as the now-famous fullerenes, generalizing thegy srematic survey of all possible trivalent polyhedra at same
icosahedral 6 cage? A fullerene G, s a trivalent polyhedral vt even the most economical semiempirical methods a

cage made up of exactly 12 pentagonal au@-{10) h.exagon.al complete study would be computationally feasible only feg, C
faces; at least one such cage can be constructed in principle forand so that is the case chosen for examination here
all even values > 20 apart from n = 22. The precise limits '

f the diff - - blished. but th The plan of the paper is as follows. Energies are to be
of the different size regimes are not yet established, but the o 5 516 by a semiempirical method for all 7595 trivalent

general tendency to increase in connectivity from chain to fing o\ hedral Gy cages in their respective equilibrium geometries
to cage is clear. _ _ _ . (82) and tested for correlation with topological/structural
T_he present study is concerned with the relative stablll_t!es invariants (83). It is fully expected that the sole possible
of different types of cage structure, rather than the competition fylerene structure, based on the regular Platonic dodecahedron,
between open and closed topologies. For a test case, it dealgyjj| emerge as the most stable of the polyhedra, though this
with the relative stabilities of fullerenes and other carbon eypectation has not so far been tested by direct calculation, but
polyhedra at fixed nuclearity in a more comprehensive way than \ye do not claim that this closed cage will necessarily be the
attempted hitherto, and suggestslgsimple topological criterion(‘:]k)ba"y optimal structure for 20 carbon atoms. The main
that can be used to assess stability of nonfullerene structure§pterest of the explicit calculations reported here will lie in their
and to predict candidate cages where fullerenes are notranking of the nonfullerene polyhedra and the light that they
mathematically possible. shed on the case of,&(§4), for which there are almost 6 times

Various theoretical studies have suggested that trivalent cagesas many possible polyhedra but no classical fullerene candidate.
containing some rings of other sizes (nonclassical fullerenes)

may be competitive with and even occasionally superior in 2. Trivalent Structural Isomers of Czg

stability to fullerenes. For example, it is predicted that alj C

cage isomers made up of exactly 1 heptagonal, 13 pentagonal

and 8 hexagonal faces would be of lower energy than at least

some Gy classical fullereneand that a specific one-heptagon

isomer of G, would be of lower energy thaany classical

fullerene with 62 atoms. vHf=e+2 1)
While it is a chemically reasonable expectation that fullerenes

should be more stable than structures with very small or very and its trivalence forces the conditions

large rings, the number and variety of trivalent structures is

immense, and fullerenes form a small, and in the limit van- e=3n/2 (2

f=u2+2=31, ©)
r

In this comparison of cage energetics, we consider only those
isomers that are closed trivalent polyhedra. A trivalent,
pseudospherical polyhedron wittvertices e edges, anfifaces
obeys Euler’s theorem
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The signature{f} of face sizes is therefore subject to the 4198 4197 7265 7272

restriction
S6—nf=3M+20+f—f—2..=12 (4 @ @ @
-

which implies that any trivalent polyhedron must have some
subhexagonal faces and that any superhexagonal faces will be
balanced by extra faces of size 5 or smaller. Not everyfget 7264 7273 4167 7594

obeying (4) is geometrically realizable, but those sets that can
be realized as polyhedra will often correspond to multiple
isomeric structures. The minimal face size is 3, and the maximal
face size can be seen in general ta/f2+ 1 from the following
argument: any trivalent has an even number of vertices, and

for v > 4 it is, therefore, possible to construct a prism isomer
with two rings of v/2 vertices separated by squarés= v/2,

f,2 = 2), but forv > 6 this structure can be squashed on one 4059 7274 7595 478
side to give a wedge-shaped isomer where two larger rings, each

of sizev/2 + 1, share an edgés(= 2,f4 = v/2 — 2,f o041 = 2);

further increase in face size is not possible for a 3-connected

structure, i.e., one for which no pair of faces share more than

one edge.

The range of face sizes forgls thus 3= r < 11. Complete Figure 1. Optimized geometries for the polyhedraj,Gsomers of
enumeration by the highly efficient algorithm of McKay and lowest energy in two semiempirical models. The 12 isomers shown
Brinkmanri gives a total of 7595 structural isomers of poly- SPan the 10 of lowest energy in each of the QCFF/PI and DFTB models.
hedral Go spanning 445 of the 480 distinct signatures that would Each isomer is labeled by its position in the sequence of structures
b ibl ith (3 d (4 generated by the Brinkmann/McKay prograretails of energies,

e compatible W't ) an, (4). . . symmetries and rankings in the two models are given in Table 1.

From the adjacency list for each isomer given by the
enumeration program, approximate topological Cartesian co- TABLE 1: Relative Energies of the 10 Most Stable
ordinates were calculated by diagonalization of the adjacency Polyhedral Isomers of Gy in Two Semiempirical Models!
matrix, adjusted where necessary by human intervention and rank energy
smpo;hed by passage through a proprietary molecular m.ec.hanics N G F QCFF DFTB AEq AEp
optimizer. All 7595 isomeric structures were then optimized

using the QCFF/PI (quantum consistent force figJddemiem- ﬂgg 'C“ ié % % 523‘% 12%’%
pirical methoc® This model incorporates a molecular mechanics ~ 75g5 Ci” 16 3 5 622.6 2550
treatment of ther framework and an explicit molecular orbital 7272 G 18 4 3 707.9 148.7
treatment of ther electrons in a carbon cage. It has beenused 7264 G 18 5 4 754.0 194.9
successfully for calculation of structural, energetic, and vibra- 7273 Ci 18 6 7 8155 2980
tional data on both classical and nonclassical fulleréi§ég:12 4167 G 20 7 13 9255 356.3
. . . . 7594 Cs 18 8 15 945.2 376.8
Comparisons with other methods that use quite different ,ggq C. 20 9 9 9493 336.0
approximation schemes suggest that reliance may be placed on 7274 ¢, 20 10 6 0983.7 2775
the general trends predicted by QCFF/PI, though it probably 7295 C; 20 12 10 1047.3 3425
exaggerates the energetic cost of departure from the fullerene 7478  D: 20 16 8 11799 3353
recipe. Similar methodological comparisons will also be made  ap js the position of the isomer in the complete list of trivalent
in the present work. polyhedra produced by the Brinkmann/McKay algorithi§, is the

The calculated energies of trivalensd@ages span a range  maximal symmetry grougf; is the parametef (6 — r) fr giving the
of 6533 kJ mot? and, as expected, the dodecahedral fullerene distance of the face recipe from the classical fullereng&, and

; ; AEp are the energies (in kJ md) relative to the best polyhedral isomer

ICS;)rT;er f(l)asl dthke]alo(\;veasrt] t%taé;nsek:g}/l Int\':\t]oe Seleé'ctﬁ‘)?];h?np%ﬁerd in QCFF/PI and DFTB models, respectively, and the “rank” column
g. wou v P ( . ! u lists the position of the isomer in the overall energy order for both

orbitals?), the closed-shell QCFF/PI calculation produces a mogels. Optimized (QCFF/PI) structures for all isomers are illustrated

small stabilizing JahnTeller distortion to a less symmetrical  in Figure 1.
structure.

Figure 1 shows the optimized structures for the 10 isomers moment may usefully discriminate between them. Figure 3
of lowest energy within the QCFF/PI model, and the details of illustrates the correlation of calculated energy with the parameter
energies, symmetries, and rankings in the two models are given
in Table 1. All are roughly spherical in shape, and the lowest F= Z(e — r)2 f>12
five include only square, pentagonal, and hexagonal faces. In T
contrast, isomers with many triangular faces or with the very
large nonagonal, decagonal, or undecagonal rings have angulaF measures the departure in a least-squares sense of a trivalent
shapes and appear at the top of the energy range. Figure Zolyhedron from the fullerene recipe (far= 20,F = 12 <
illustrates this general tendency of the energy to rise with the {f;} ={0, 0, 12,n/2 — 10, 0, ..}) and does indeed pick out the
number of three-membered rings and suggests that a correlatiodow-energy structures, with the distribution in Figure 3 pointing
based on composition of the face signature could give an sharply down to the fullerene limit. As a first filteF, could
appropriate way to systematize the energy data. be used to effect a drastic reduction in the size of the isomer

Given that all the signaturgd;} obey constraints on zeroth  set for explicit energy calculations and will be used in this way
and first moments ((3) and (4)), functions based on the secondfor C,, (see below).
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Figure 3. Correlation of relative energ&Eq (QCFF/PI method, in kJ
mol™) of all 7595 trivalent polyhedral structural isomers o @ith
F, the second-moment parameter describing departures from theFigure 4. Correlations of Hakel quantities with relative energyEq
fullerene ideal. The poinE = 12 represents a fullerene. (QCFF/PI method, in kJ mot) for all 7595 trivalent polyhedral
structural isomers of £&. (a) E; is the delocalization energy per atom,

F has the advantage over more detailed measures of curvaturefnd (b)A is the HOMO-LUMO gap, both given in units off|, the
strain that it depends on the graph connectivity alone and SObond parameter assumed to be common to all edges of all polyhedral
avoids the need for an explicit knowledge of the geometrical cages.
embedding of the graph in three-dimensional spacéckElu
parameters such as highest occupied molecular oridgalest
unoccupied molecular orbital (HOMELUMO) gap and delo-
calization energy are also defined entirely by the graph but, as
Figure 4 shows, give no help at all in the selection of stable
structures. The reasons for their failure are understandable in
that the crude single; singlef, w-only Huckel model takes L g .
no account of the wide range of local environments and strong m|n|ma. The fullerene isomer again emerged as the most stable
variation in steric strain for polyhedra with different ring sizes N the set, and the methods agreed on the composition of the
and thereby ignores the energetic role of three-quarters of theSet Of the best 5 isomers, though with changes in the detailed
valence electrons. ordering and a compression of the energy scale by a factor of

With any semiempirical model it is wise to check calculated 2 ©OF more. As the scatter plots of Figure 5 show, there is general
trends for excessive dependence on the parametrization. Herédreement on the low-energy set of isomers and the shape of
this was done by repeating a large sample of the optimizations the overall correlation of energy arkibetween the QCFF/PI
with the density functional tight binding (DFTB) method. 2and DFTB methods.

DFTB is parametrized to reproduce full density-functional  The polyhedral cage next lowest in energy after the fullerene
results for small moleculésand has been used in a number of is agreed by both methods to be the two-square, eight-pentagon
studies on classical and nonclassical fullerenes. GeneralC,, structure that would be produced by a generalized Stone
qualitative agreement between DFTB and QCFF/PI on trends Wales rotatio16 of an edge of the dodecahedron, with an

in energy and geometry has been found in these st8di¥s}?
reinforcing confidence in both models. All 478&{somers

with QCFF/PI energies below a cutoff of 2500 kJ rrialelative

to the fullerene isomer were reoptimized with DFTB and, in
the absence of any special precautions to preserve connectivity
or encourage convergence, 410 of these gave distinct local
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400 cEere 46753 Ci 18 4 3 378.7 61.1
d 4681 C, 16 5 13 401.7  189.9
. ) 24725 Cs 18 6 10 431.4 167.3
200 . 46 839 C 18 7 5 461.5 72.7
.0 46 756 () 18 8 7 479.9 134.7
46 860 Ca, 18 9 11 499.6 187.5
0 | T T . 46 754 C 18 10 9 533.9 161.2
24726 C 20 12 8 585.8 147.9
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Figure 5. (a) Correlation between the relative energies (in kJ ol
calculated in QCFF/PIEg) and DFTB AEp) models for 410 trivalent . . . .
polyhedral isomers of with AEq < 2500 kJ mot™. (b) Correlation The_re are 49_ 566 trivalent polyhedra with 22 vertices, with
of DFTB energies for this isomer set with the second-moment face sizesranging from 3to 12. The value$-dbr these cages
parameterF. range from 14 to 126. Minimization of as a criterion of

) energy gives a unigue best candidate: @gstructure with 1
energy of 521 (QCFF/PI), 125 (DFTB) kJ mélrelative tothe  square, 2 hexagons, and 10 pentagons that would be obtained
original fullerene. o o by bevelling one edge of a dodecahedrin{ 1, fs = 10,fs =

For the present purpose, it is sufficient to note that all 7595 2 F = 14).
trivalent polyhedra lie in local minima on the potential energy g check this qualitative prediction we took all 745 trivalent
surface for 20 carbon atoms, the fullerene in the lowest of these.c, cages with 14< F < 28 and optimized them in QCFF/PI
There is much discussion in the literature about the global 5ng DFTB models. Both models agreed in placing the
optimum;:21*2¢ with close competition between cage, ring, and  minimal- isomer lower in energy than any of its fellows, 259
bowl structures, converging to the conclusion that thermody- «QcFF/PI) or 60 (DFTB) kJ mof below aC, cage withF =
namic and experimental structures (not necessarily identical) 15 Figure 6 shows optimized geometries for the lowest-energy
are open ISOmers. polyhedral isomers of &, and the details of symmetry and
energy data are listed in Table 2. Again the DFTB energy scale

3. A Cage Structure for Cz is strongly compressed with respect to QCFF/PI: the 745

A fullerene polyhedron is mathematically possible for= selected isomers span a range of 3259 kJ il QCFF/PI,
20 + 2k for integer values ok > 0 with the sole exception of  and the 704 of them that converged easily in DFTB span only
k = 1, the nonexistent 12-pentagon, 22-atom caggince G, 1323 kJ motl. Qualitative correlation between the two models

cannot be a fullerene, which is the most stable of its cage for this set is good, an& is once again shown to be a useful
isomers? (We reserve judgment on the question of whetherindicator of relative stability (Figure 7).

such a cage will itself be more stable than a cyclic or bowl-like ~ While we cannot claim that the cage discussed here is the
structure). most stable of all possible forms for,£ it is the best poly-
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Figure 7. (a) Correlation between the relative energies (in kJ 4ol for the illustrated structuresi(N, G, F) are 4, 1,Tq, 36; 6, 1,Dsn, 30;
calculated in QCFF/PIAEg) and DFTB (AEp) models for 704 trivalent 8, 2,0n, 24; 8, 1,Cy, 28; 10, 4,Dsn, 22; 10, 5,C3,, 24; 12, 14Dy,

polyhedral isomers of £ with second-moment parameter ¥4F < 20; 12, 5,Den, 24; 12, 9,Cs, 24; 12, 13,Con, 24; 14, 50,D3,, 18; 14,
28. (b) Correlation of DFTB energies for this isomer set with Ehe 34, Cy, 20; 16, 233Dyq, 16; 16, 142C3,, 18; 18, 746,Cy,, 16; 18,
parameter. 1211,C,, 18; 18, 1241C,,, 18.

hedron, coming closest in a well-defined way to the unattainable minimize F may again be expected to be the lowest in energy
fullerene ideal, and it should certainly be considered in future of the conceivable carbon polyhedra, though less stable than
searches. The DFTB model suggests that monocyelicvl the more open structures at these nuclearities; rivertex

lie 41 kJ moi ! below, and linear & 62 kJ mot?! above, the trivalent polyhedra of minimal and next-to-minim& are
cage form, again indicating a close competition between illustrated for 4< n < 18 in Figure 8.

differently connected structures. It is gratifying to note that the latest large-scale systematic
] full density-functional calculations with and without gradient
4. Conclusion corrections confirm this set of mimim&-polyhedra of special

Comprehensive model calculations ong@nd G, have stability. In the calculations by Jones and Sei?émhe mini-
shown that classical fullerene polyhedra, where available, will mal+ structures for ¢ (14:50), Ge (16:233), Gg (18:746),
generally be of lower total energy than other trivalent cage Czo and G, are all found to be the cage isomers of lowest en-
structures. A topological invariant based on the distribution of ergy at their respective nuclearities. For-1¥B atoms there
face sizes has been found to be a useful guide to relative energiegre more open, noncage structures of lower total energy at both
of the various nonclassical structureB.may be expected to  local-density and gradient-corrected levels, whereas fpad
be useful as a filter at high nuclearity too. Even for the one Cz2 the open structures are found to be globally optimal only
case (Gy) where a nonclassical structure is reliably predicted when the calculation includes gradient corrections. There is
to be of lower energy than a fullerefd; takes its next-to- also an excellent correlation between the full density functional
minimal value of 14. In the regime below= 20, where there and model DFTB predictions for the best few isomers in each
are too few atoms to form a fullerene, the structures that structural class, confirming the general aptness of the DFTB
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and related models for the present wider survey of polyhedral

isomer space.
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