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Model semiempirical studies using quantum consistent force field/π (QCFF/PI) and density functional tight
binding (DFTB) methods show the C20 dodecahedral fullerene to have the lowest energy of all 7595
mathematically possible 20-vertex trivalent polyhedral cages by a substantial margin (estimated at 521 (QCFF/
PI) or 125 (DFTB) kJ mol-1). A topological invariant based on the distribution of face sizes is used to
correlate the energies and predict the best polyhedral structure for C22, which must be a nonfullerene cage.
With 1 square, 10 pentagonal, and 2 hexagonal faces, this structure is verified to be more stable (by 259
(QCFF/PI), 60 (DFTB) kJ mol-1) than its nearest trivalent polyhedral rival.

1. Introduction

From a combination of experimental and theoretical work,
the outlines have emerged of a general picture of the thermo-
dynamically favored structures for clusters consisting of a few
to a few hundred carbon atoms (for reviews, see for example
refs 1, 2 and references therein). Open chains for very small
Cnmolecules give way to cyclic and then more highly connected
structures to be replaced, in turn, by polyhedra, which for atom
counts of 60, 70, 76, 78, and 84 among others have been
characterized as the now-famous fullerenes, generalizing the
icosahedral C60 cage.3 A fullerene Cn is a trivalent polyhedral
cage made up of exactly 12 pentagonal and (n/2-10) hexagonal
faces; at least one such cage can be constructed in principle for
all even valuesn g 20 apart4 from n ) 22. The precise limits
of the different size regimes are not yet established, but the
general tendency to increase in connectivity from chain to ring
to cage is clear.
The present study is concerned with the relative stabilities

of different types of cage structure, rather than the competition
between open and closed topologies. For a test case, it deals
with the relative stabilities of fullerenes and other carbon
polyhedra at fixed nuclearity in a more comprehensive way than
attempted hitherto, and suggests a simple topological criterion
that can be used to assess stability of nonfullerene structures
and to predict candidate cages where fullerenes are not
mathematically possible.
Various theoretical studies have suggested that trivalent cages

containing some rings of other sizes (nonclassical fullerenes)
may be competitive with and even occasionally superior in
stability to fullerenes. For example, it is predicted that all C40

cage isomers made up of exactly 1 heptagonal, 13 pentagonal,
and 8 hexagonal faces would be of lower energy than at least
some C40 classical fullerene5 and that a specific one-heptagon
isomer of C62 would be of lower energy thanany classical
fullerene with 62 atoms.6

While it is a chemically reasonable expectation that fullerenes
should be more stable than structures with very small or very
large rings, the number and variety of trivalent structures is
immense, and fullerenes form a small, and in the limit van-

ishingly small, fraction of the possibilities. At 20 vertices there
are 7595 trivalents of which only one is a fullerene. The number
of trivalents climbs steeply (49 566 forn ) 22, 339 722 forn
) 24, 2 406 841 forn) 26, and so on7) and by 60 vertices has
reached an estimated 5× 1021 of which only 1812 are
fullerenes8 (all counts refer to structural isomers). It is therefore
at least conceivable that some class of trivalent polyhedra will
improve in energy on the fullerenes. To test this idea we need
a rule of thumb for estimating the stability of an arbitrary
trivalent carbon cage. A first step to obtaining this would be a
systematic survey of all possible trivalent polyhedra at somen.
With even the most economical semiempirical methods a
complete study would be computationally feasible only for C20,
and so that is the case chosen for examination here.
The plan of the paper is as follows. Energies are to be

evaluated by a semiempirical method for all 7595 trivalent
polyhedral C20 cages in their respective equilibrium geometries
(§2) and tested for correlation with topological/structural
invariants (§3). It is fully expected that the sole possible
fullerene structure, based on the regular Platonic dodecahedron,
will emerge as the most stable of the polyhedra, though this
expectation has not so far been tested by direct calculation, but
we do not claim that this closed cage will necessarily be the
globally optimal structure for 20 carbon atoms. The main
interest of the explicit calculations reported here will lie in their
ranking of the nonfullerene polyhedra and the light that they
shed on the case of C22 (§4), for which there are almost 6 times
as many possible polyhedra but no classical fullerene candidate.

2. Trivalent Structural Isomers of C20

In this comparison of cage energetics, we consider only those
isomers that are closed trivalent polyhedra. A trivalent,
pseudospherical polyhedron withV vertices,eedges, andf faces
obeys Euler’s theorem

and its trivalence forces the conditions

wherefr is the number of faces of sizer, i.e., ofr-sided polygons.
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The signature{fr} of face sizes is therefore subject to the
restriction

which implies that any trivalent polyhedron must have some
subhexagonal faces and that any superhexagonal faces will be
balanced by extra faces of size 5 or smaller. Not every set{fr}
obeying (4) is geometrically realizable, but those sets that can
be realized as polyhedra will often correspond to multiple
isomeric structures. The minimal face size is 3, and the maximal
face size can be seen in general to beV/2+ 1 from the following
argument: any trivalent has an even number of vertices, and
for V > 4 it is, therefore, possible to construct a prism isomer
with two rings ofV/2 vertices separated by squares (f4 ) V/2,
fV/2 ) 2), but forV > 6 this structure can be squashed on one
side to give a wedge-shaped isomer where two larger rings, each
of sizeV/2+ 1, share an edge (f3 ) 2, f4 ) V/2- 2, fV/2+1 ) 2);
further increase in face size is not possible for a 3-connected
structure, i.e., one for which no pair of faces share more than
one edge.
The range of face sizes for C20 is thus 3e r e 11. Complete

enumeration by the highly efficient algorithm of McKay and
Brinkmann7 gives a total of 7595 structural isomers of poly-
hedral C20 spanning 445 of the 480 distinct signatures that would
be compatible with (3) and (4).
From the adjacency list for each isomer given by the

enumeration program, approximate topological Cartesian co-
ordinates were calculated by diagonalization of the adjacency
matrix, adjusted where necessary by human intervention and
smoothed by passage through a proprietary molecular mechanics
optimizer. All 7595 isomeric structures were then optimized
using the QCFF/PI (quantum consistent force field/π) semiem-
pirical method.9 This model incorporates a molecular mechanics
treatment of theσ framework and an explicit molecular orbital
treatment of theπ electrons in a carbon cage. It has been used
successfully for calculation of structural, energetic, and vibra-
tional data on both classical and nonclassical fullerenes.5,6,10-12

Comparisons with other methods that use quite different
approximation schemes suggest that reliance may be placed on
the general trends predicted by QCFF/PI, though it probably
exaggerates the energetic cost of departure from the fullerene
recipe. Similar methodological comparisons will also be made
in the present work.
The calculated energies of trivalent C20 cages span a range

of 6533 kJ mol-1 and, as expected, the dodecahedral fullerene
isomer has the lowest total energy in the set. As the perfectIh
cage would have an openπ shell (two electrons in four
orbitals13), the closed-shell QCFF/PI calculation produces a
small stabilizing Jahn-Teller distortion to a less symmetrical
structure.
Figure 1 shows the optimized structures for the 10 isomers

of lowest energy within the QCFF/PI model, and the details of
energies, symmetries, and rankings in the two models are given
in Table 1. All are roughly spherical in shape, and the lowest
five include only square, pentagonal, and hexagonal faces. In
contrast, isomers with many triangular faces or with the very
large nonagonal, decagonal, or undecagonal rings have angular
shapes and appear at the top of the energy range. Figure 2
illustrates this general tendency of the energy to rise with the
number of three-membered rings and suggests that a correlation
based on composition of the face signature could give an
appropriate way to systematize the energy data.
Given that all the signatures{fr} obey constraints on zeroth

and first moments ((3) and (4)), functions based on the second

moment may usefully discriminate between them. Figure 3
illustrates the correlation of calculated energy with the parameter

F measures the departure in a least-squares sense of a trivalent
polyhedron from the fullerene recipe (forn g 20, F ) 12 S
{fr} ) {0, 0, 12,n/2- 10, 0, ...}) and does indeed pick out the
low-energy structures, with the distribution in Figure 3 pointing
sharply down to the fullerene limit. As a first filter,F could
be used to effect a drastic reduction in the size of the isomer
set for explicit energy calculations and will be used in this way
for C22 (see below).

∑
r

(6- r)fr ) 3f3 + 2f4 + f5 - f7 - 2f8 ...) 12 (4)

Figure 1. Optimized geometries for the polyhedral C20 isomers of
lowest energy in two semiempirical models. The 12 isomers shown
span the 10 of lowest energy in each of the QCFF/PI and DFTB models.
Each isomer is labeled by its position in the sequence of structures
generated by the Brinkmann/McKay program.7 Details of energies,
symmetries and rankings in the two models are given in Table 1.

TABLE 1: Relative Energies of the 10 Most Stable
Polyhedral Isomers of C20 in Two Semiempirical Modelsa

rank energy

N G F QCFF DFTB ∆EQ ∆ED

4198 Ih 12 1 1 0.0 0.0
4197 C2V 16 2 2 521.3 125.3
7265 C2 16 3 5 622.6 255.0
7272 Cs 18 4 3 707.9 148.7
7264 Cs 18 5 4 754.0 194.9
7273 C1 18 6 7 815.5 298.0
4167 Cs 20 7 13 925.5 356.3
7594 Cs 18 8 15 945.2 376.8
4059 Cs 20 9 9 949.3 336.0
7274 C2 20 10 6 983.7 277.5
7295 C2 20 12 10 1047.3 342.5
7478 D2 20 16 8 1179.9 335.3

a N is the position of the isomer in the complete list of trivalent
polyhedra produced by the Brinkmann/McKay algorithm,7 G is the
maximal symmetry group,F is the parameter∑r(6 - r)2 fr giving the
distance of the face recipe from the classical fullerene,∆EQ and
∆ED are the energies (in kJ mol-1) relative to the best polyhedral isomer
in QCFF/PI and DFTB models, respectively, and the “rank” column
lists the position of the isomer in the overall energy order for both
models. Optimized (QCFF/PI) structures for all isomers are illustrated
in Figure 1.

F ) ∑
r

(6- r)2 fr g 12
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F has the advantage over more detailed measures of curvature/
strain that it depends on the graph connectivity alone and so
avoids the need for an explicit knowledge of the geometrical
embedding of the graph in three-dimensional space. Hu¨ckel
parameters such as highest occupied molecular orbital-lowest
unoccupied molecular orbital (HOMO-LUMO) gap and delo-
calization energy are also defined entirely by the graph but, as
Figure 4 shows, give no help at all in the selection of stable
structures. The reasons for their failure are understandable in
that the crude single-R, single-â, π-only Hückel model takes
no account of the wide range of local environments and strong
variation in steric strain for polyhedra with different ring sizes
and thereby ignores the energetic role of three-quarters of the
valence electrons.
With any semiempirical model it is wise to check calculated

trends for excessive dependence on the parametrization. Here
this was done by repeating a large sample of the optimizations
with the density functional tight binding (DFTB) method.
DFTB is parametrized to reproduce full density-functional
results for small molecules14 and has been used in a number of
studies on classical and nonclassical fullerenes. General
qualitative agreement between DFTB and QCFF/PI on trends

in energy and geometry has been found in these studies,5,6,11,12

reinforcing confidence in both models. All 478 C20 isomers
with QCFF/PI energies below a cutoff of 2500 kJ mol-1 relative
to the fullerene isomer were reoptimized with DFTB and, in
the absence of any special precautions to preserve connectivity
or encourage convergence, 410 of these gave distinct local
minima. The fullerene isomer again emerged as the most stable
in the set, and the methods agreed on the composition of the
set of the best 5 isomers, though with changes in the detailed
ordering and a compression of the energy scale by a factor of
2 or more. As the scatter plots of Figure 5 show, there is general
agreement on the low-energy set of isomers and the shape of
the overall correlation of energy andF between the QCFF/PI
and DFTB methods.

The polyhedral cage next lowest in energy after the fullerene
is agreed by both methods to be the two-square, eight-pentagon
C2V structure that would be produced by a generalized Stone-
Wales rotation15,16 of an edge of the dodecahedron, with an

Figure 2. Correlation of relative energy∆EQ (QCFF/PI method, in kJ
mol-1) of all 7595 trivalent polyhedral structural isomers of C20 with
f3, the number of triangular faces in the cage.

Figure 3. Correlation of relative energy∆EQ (QCFF/PI method, in kJ
mol-1) of all 7595 trivalent polyhedral structural isomers of C20 with
F, the second-moment parameter describing departures from the
fullerene ideal. The pointF ) 12 represents a fullerene.

Figure 4. Correlations of Hu¨ckel quantities with relative energy∆EQ
(QCFF/PI method, in kJ mol-1) for all 7595 trivalent polyhedral
structural isomers of C20. (a)Eπ is the delocalization energy per atom,
and (b)∆ is the HOMO-LUMO gap, both given in units of|â|, the
bond parameter assumed to be common to all edges of all polyhedral
cages.
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energy of 521 (QCFF/PI), 125 (DFTB) kJ mol-1 relative to the
original fullerene.
For the present purpose, it is sufficient to note that all 7595

trivalent polyhedra lie in local minima on the potential energy
surface for 20 carbon atoms, the fullerene in the lowest of these.
There is much discussion in the literature about the global
optimum,1,2,17-24with close competition between cage, ring, and
bowl structures, converging to the conclusion that thermody-
namic and experimental structures (not necessarily identical)
are open isomers.

3. A Cage Structure for C22

A fullerene polyhedron is mathematically possible forn )
20+ 2k for integer values ofk g 0 with the sole exception of
k ) 1, the nonexistent 12-pentagon, 22-atom cage.4 Since C22
cannot be a fullerene, which is the most stable of its cage
isomers? (We reserve judgment on the question of whether
such a cage will itself be more stable than a cyclic or bowl-like
structure).

There are 49 566 trivalent polyhedra with 22 vertices, with
face sizes ranging from 3 to 12. The values ofF for these cages
range from 14 to 126. Minimization ofF as a criterion of
energy gives a unique best candidate: theC2V structure with 1
square, 2 hexagons, and 10 pentagons that would be obtained
by bevelling one edge of a dodecahedron (f4 ) 1, f5 ) 10, f6 )
2, F ) 14).
To check this qualitative prediction we took all 745 trivalent

C22 cages with 14e F e 28 and optimized them in QCFF/PI
and DFTB models. Both models agreed in placing the
minimal-F isomer lower in energy than any of its fellows, 259
(QCFF/PI) or 60 (DFTB) kJ mol-1 below aC2 cage withF )
16. Figure 6 shows optimized geometries for the lowest-energy
polyhedral isomers of C22, and the details of symmetry and
energy data are listed in Table 2. Again the DFTB energy scale
is strongly compressed with respect to QCFF/PI: the 745
selected isomers span a range of 3259 kJ mol-1 in QCFF/PI,
and the 704 of them that converged easily in DFTB span only
1323 kJ mol-1. Qualitative correlation between the two models
for this set is good, andF is once again shown to be a useful
indicator of relative stability (Figure 7).
While we cannot claim that the cage discussed here is the

most stable of all possible forms for C22, it is the best poly-

Figure 5. (a) Correlation between the relative energies (in kJ mol-1)
calculated in QCFF/PI (∆EQ) and DFTB (∆ED) models for 410 trivalent
polyhedral isomers of C20 with ∆EQ e 2500 kJ mol-1. (b) Correlation
of DFTB energies for this isomer set with the second-moment
parameter,F.

Figure 6. Optimized geometries for C22 polyhedral cages. Notation
and isomer labeling are as in Figure 1; details of symmetry and energy
data are listed in Table 2.

TABLE 2: Relative Energies of the 10 Most Stable
Polyhedral Isomers of C22 in Two Semiempirical Modelsa

rank energy

N G F QCFF DFTB ∆EQ ∆ED

25 920 C2V 14 1 1 0.0 0.0
25 921 C2 16 2 2 259.4 59.8
46 755 Cs 16 3 6 297.9 98.9
46 753 C3V 18 4 3 378.7 61.1
46 861 C2 16 5 13 401.7 189.9
24 725 Cs 18 6 10 431.4 167.3
46 839 C1 18 7 5 461.5 72.7
46 756 C2 18 8 7 479.9 134.7
46 860 C3V 18 9 11 499.6 187.5
46 754 C1 18 10 9 533.9 161.2
24 726 C1 20 12 8 585.8 147.9
25 922 C3V 18 24 4 738.1 66.0

aNotation as in Table 1.
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hedron, coming closest in a well-defined way to the unattainable
fullerene ideal, and it should certainly be considered in future
searches. The DFTB model suggests that monocyclic C22 will
lie 41 kJ mol-1 below, and linear C22 62 kJ mol-1 above, the
cage form, again indicating a close competition between
differently connected structures.

4. Conclusion

Comprehensive model calculations on C20 and C22 have
shown that classical fullerene polyhedra, where available, will
generally be of lower total energy than other trivalent cage
structures. A topological invariant based on the distribution of
face sizes has been found to be a useful guide to relative energies
of the various nonclassical structures.F may be expected to
be useful as a filter at high nuclearity too. Even for the one
case (C62) where a nonclassical structure is reliably predicted
to be of lower energy than a fullerene,6 F takes its next-to-
minimal value of 14. In the regime belown) 20, where there
are too few atoms to form a fullerene, the structures that

minimizeF may again be expected to be the lowest in energy
of the conceivable carbon polyhedra, though less stable than
the more open structures at these nuclearities; then-vertex
trivalent polyhedra of minimal and next-to-minimalF are
illustrated for 4e n e 18 in Figure 8.
It is gratifying to note that the latest large-scale systematic

full density-functional calculations with and without gradient
corrections confirm this set of mimimal-F polyhedra of special
stability. In the calculations by Jones and Seifert,24 the mini-
mal-F structures for C14 (14:50), C16 (16:233), C18 (18:746),
C20, and C22 are all found to be the cage isomers of lowest en-
ergy at their respective nuclearities. For 14-18 atoms there
are more open, noncage structures of lower total energy at both
local-density and gradient-corrected levels, whereas for C20 and
C22 the open structures are found to be globally optimal only
when the calculation includes gradient corrections. There is
also an excellent correlation between the full density functional
and model DFTB predictions for the best few isomers in each
structural class, confirming the general aptness of the DFTB

Figure 7. (a) Correlation between the relative energies (in kJ mol-1)
calculated in QCFF/PI (∆EQ) and DFTB (∆ED) models for 704 trivalent
polyhedral isomers of C22 with second-moment parameter 14e F e
28. (b) Correlation of DFTB energies for this isomer set with theF
parameter.

Figure 8. Trivalentn-vertex polyhedra with minimal and next lowest
values of theF parameter (4e n e 18). A unique solution is found
for minimal F at each value ofn in the range. Vertex counts, isomer
labels in the Brinkmann/McKay convention, point groups, andF values
for the illustrated structures (n, N, G, F) are 4, 1,Td, 36; 6, 1,D3h, 30;
8, 2,Oh, 24; 8, 1,C2V, 28; 10, 4,D5h, 22; 10, 5,C3V, 24; 12, 14,D2d,
20; 12, 5,D6h, 24; 12, 9,Cs, 24; 12, 13,C2h, 24; 14, 50,D3h, 18; 14,
34,C2V, 20; 16, 233,D4d, 16; 16, 142,C3V, 18; 18, 746,C2V, 16; 18,
1211,C2, 18; 18, 1241,C2V, 18.
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and related models for the present wider survey of polyhedral
isomer space.
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